Doctorate / PhD

Name

Title

Year

Institution

Hofbauer H., Mag. Vergleich der Kompetenzen und Einstellungen von Mathematiklehrkräften in der AHS-Unterstufe und NMS mit unterschiedlichen Abschlüssen am Hochschulstandort Linz 2018 University of Linz
Szoelgyenyi A., Mag.
Zur Entwicklung des Geometrieunterrichts in der Unterstufe oesterreichischer AHS in den letzten 50 Jahren. Mit besonderem Fokus auf das raeumliche Vorstellungsvermoegen 2017 University of Linz
Hinterhoeller M., Mag.
Eine interdisziplinäre Studie zur Perspektive und Raumerfassung in topographischen Landschafts- und Panoramabildern der römischen Wandmalerei anhand der sakral-idyllischen, nilotischen und Villenlandschaftsbilder vom 1. Jh. V. Chr. Bis zum Ende der pomejanischen Stile 2011 University of Salzburg

 

Master / Diplom

Name

Title

Year

Institution

Bischof F. Behandlung des Goldenen Schnittes mit speziellem Fokus auf die methodisch-didaktische Umsetzung im Unterricht 2017 University of Salzburg
Braeuml C. Technologieeinsatz im Mathematikunterricht - Eine didaktische Annäherung anhand exemplarischer Unterrichtsmaterialien zu quadratischen Funktionen 2017 University of Salzburg
Haslinger C. Constructive Solid Geometry mit Triangulierten Primitiven - Vom digitalen Entwurf bis zum ausgedruckten 3D-Modell (Nebenbetreuer) 2017 University of Salzburg
Hirnsperger A. Über Fibonacci, die Pythagoreer und das regelmäßige Fünfeck - Exemplarische mathematische Phänomene des goldenen Schnitts – enaktiv, ikonisch und symbolisch realisiert in sechs Übungsstationen 2017 University of Salzburg
Jaeger J. Ebene geometrische Figuren in der Sekundarstufe I - Eine vollständige Sammlung und ein Vergleich zwischen Mathematikschulbuch und Mathematiklehrplan 2017 University of Salzburg
Leitner M. Kompetenzevaluierung durch Spiele im Mathematikunterricht - Das M4 Kompetenzcheck-Spiel 2017 University of Salzburg
Manhart S. Kegelschnitte im Mathematikunterricht - Ein Stationsbetrieb unterstützt durch neue Medien 2017 University of Salzburg
Pilotto L. Der goldene Schnitt in der Natur – betrachtet anhand einer bemerkenswerten Verknüpfung von Fibonaccizahlen, Phyllotaxis, Spiralen und dem goldenen Verhaeltnis 2017 University of Salzburg
Promberger J. Der Satz des Pythagoras - Eine strukturierte Beweissammlung für den Mathematikunterricht 2017 University of Salzburg
Riedelsperger M. Konstruktionen mit Zirkel und Lineal -mit speziellem Schwerpunkt auf die Konstruktion regelmäßiger n-Ecke 2017 University of Salzburg
Stoiberer A. Ein fachdidaktisch-technologischer Unterrichtsentwurf zum Lehrsatz des Pythagoras – Interaktive, kollaborative Online-Aufgaben via QR-Code 2017 University of Salzburg
Wilhelm M. „Spatial Move ARound Test“ (SMART) – Entwicklung eines Tests zur Untersuchung der raeumlichen Orientierungsfähigkeit von Individuen 2017 University of Salzburg
Zirm U. Didaktisch strukturierte Förderung des Raumvorstellungsvermoegens anhand von spezifischen Lernmaterialien in deutscher und italienischer Sprache 2017 University of Salzburg
Hofbauer-Vondruskova R.
Digitale Medien im Unterricht - Ein Entwurf einer Unterrichtssequenz zum Satz von Pythagoras (gemeinsame Diplomarbeit mit Johanna Oberwalder) 2016 University of Salzburg
Huemer T. Die Genetische Methode im Mathematikunterricht 2016 University of Salzburg
Korber A. Lernziel- und kompetenzorientierter Unterricht – Entwurf prototypischer Unterrichtssequenzen 2016 University of Salzburg
Mittermayr M.
Eine strukturierte didaktische Lernsequenz zur Schulung der Raumvorstellung im Unterricht basierend auf dem Vier-Faktoren-Modell 2016 University of Salzburg
Prancl S. Platonische und Archimedische Polyeder 2016 University of Salzburg
Schmalnauer M. Mathematik macht Freude - Ein Ansatz zur Vermittlung der Faszination Mathematik 2016 University of Salzburg
Schmalnauer T. Die Wuerfel sind gefallen – bereits in der Pflichtschule 2016 University of Salzburg
Oberwalder J. Digitale Medien im Unterricht - Ein Entwurf einer Unterrichtssequenz zum Satz von Pythagoras (gemeinsame Diplomarbeit mit Renata Hofbauer-Vondruskova) 2016 University of Salzburg
Wieser C. Foerderung der raeumlichen Orientierung mit Hilfe von Aufgabenstellungen aus dem taeglichen Leben in der Schule 2016 University of Salzburg
Hirsch M. Wer denkt räumlicher? Zocker oder Sportler? 2015 University of Salzburg
Maringer A.
Kreisdarstellung im Zentralriss 2014 University of Salzburg
Wallinger S. Schattenkonstruktion in Zentralrissen – mit speziellem Fokus auf die methodisch-didaktische Umsetzung für den Unterricht 2013 University of Salzburg

 

Bachelor

Name

Title

Year

Institution

Aigner K. Phänomene der Mathematik - Drei Stationen für einen Wanderworkshop
2017 University of Salzburg
Allersdorfer S. Mathematische Phänomene entdecken - Eine Sammlung dreier Stationen für eine mathematische Wanderausstellung: 1.) Auf der Suche nach einer besonderen Zahl – Pi entdecken. 2.) Wie viele Quadernetze gibt es eigentlich? - Ein Duell beginnt! 3.) Heute denken wir wie die Maya!
2017 University of Salzburg
Bammer P. Das Skalarprodukt
2017
University of Salzburg
Brandt T. Verbesserungsvorschläge zur mangelhaften grundlegenden mathematischen Bildung in Österreich  2017 University of Salzburg
Halbig L. Geometrie zum Anfasse
2017
University of Salzburg
Hartl L. Geometrische Formen erkunden und verstehen anhand der Stationen Kegelschnitte, Spiralen, Möbius-Band, Bienenwaben und Umstülpbare Würfel 2017 University of Salzburg
Hessenberger C. Entwürfe zur schülerInnenorientierten Unterrichtskonzeption im Fach Mathematik - Symmetrie, Körper und Bruchzahlen 2017 University of Salzburg
Liebing K. Sprache und/oder Mathematik?  2017 University of Salzburg
Meiringer C.
Ursachen zur mangelhaften grundlegenden mathematischen Bildung in Österreich 2017 University of Salzburg
Odermatt S. Faktoren der Raumvorstellung
2017
University of Salzburg
Pfarl V. Experimente zur Statistik & Stochastik im Mathematikunterricht
2017
University of Salzburg
Schranz C. Tweaker - Auto Rotation Module for Fused Deposition Modelling 3D Printing  2017 University of Salzburg
Speringer S. Origami in der Mathematik und Unmögliche Objekte 2017 University of Salzburg
Stoeger M. Wanderstationen: Galton-Brett, Möbiusband, Goldener Schnitt
2017
University of Salzburg

 Last update: Dec 2017

Launch

This website is online since Jan 2016.

Upps

Mistakes can happen. Feel free to contact me if you find some errors.

Final Thesis

Here you can find some suggestions of topics of your final thesis: Click.

Licensing

You can re-distribute and re-use of all graphics of this website on the condition that the creator is appropriately credited.

Materials

The materials of this website (pictures, texts, ...) are permanently renewed.